Effects of microbial iron reduction and oxidation on the immobilization and mobilization of copper in synthesized Fe(III) minerals and Fe-rich soils.
نویسندگان
چکیده
The effects of microbial iron reduction and oxidation on the immobilization and mobilization of copper were investigated in a high concentration of sulfate with synthesized Fe(III) minerals and red earth soils rich in amorphous Fe (hydr)oxides. Batch microcosm experiments showed that red earth soil inoculated with subsurface sediments had a faster Fe(III) bioreduction rate than pure amorphous Fe(III) minerals and resulted in quicker immobilization of Cu in the aqueous fraction. Coinciding with the decrease of aqueous Cu, SO4(2-) in the inoculated red earth soil decreased acutely after incubation. The shift in the microbial community composite in the inoculated soil was analyzed through denaturing gradient gel electrophoresis. Results revealed the potential cooperative effect of microbial Fe(III) reduction and sulfate reduction on copper immobilization. After exposure to air for 144 h, more than 50% of the immobilized Cu was remobilized from the anaerobic matrices; aqueous sulfate increased significantly. Sequential extraction analysis demonstrated that the organic matter/sulfide-bound Cu increased by 52% after anaerobic incubation relative to the abiotic treatment but decreased by 32% after oxidation, indicating the generation and oxidation of Cu-sulfide coprecipitates in the inoculated red earth soil. These findings suggest that the immobilization of copper could be enhanced by mediating microbial Fe(III) reduction with sulfate reduction under anaerobic conditions. The findings have an important implication for bioremediation in Cucontaminated and Fe-rich soils, especially in acid-mine-drainage-affected sites.
منابع مشابه
Microbial reduction of Fe(III)-bearing clay minerals in the presence of humic acids
Both Fe(III)-bearing clay minerals and humic acids (HAs) are abundant in the soils and sediments. Previous studies have shown that bioreduction of structural Fe(III) in clay minerals could be accelerated by adding anthraquinone compound as a redox-active surrogate of HAs. However, a quinoid analogue could not reflect the adsorption and complexation properties of HA, and little is known about th...
متن کاملFate of Cd during microbial Fe(III) mineral reduction by a novel and Cd-tolerant Geobacter species.
Fe(III) (oxyhydr)oxides affect the mobility of contaminants in the environment by providing reactive surfaces for sorption. This includes the toxic metal cadmium (Cd), which prevails in agricultural soils and is taken up by crops. Fe(III)-reducing bacteria can mobilize such contaminants by Fe(III) mineral dissolution or immobilize them by sorption to or coprecipitation with secondary Fe mineral...
متن کاملComparative Effects of Copper, Iron, Vanadium and Titanium on Low Density Lipoprotein Oxidation in vitro
Oxidation of low density lipoprotein (LDL) has been strongly implicated in the phathogenesis of atherosclerosis. The use of oxidants in dietary food stuff may lead to the production of oxidized LDL and may increase both the development and the progression of atherosclerosis. The present work investigated the effects of some elements including: copper (Cu), iron (Fe), vanadium (V) and titanium (...
متن کاملArsenic Adsorption and Reduction in Iron-rich Soils Nearby Landfills in Northwest Florida
In Florida, soils are mainly composed of Myakka, an acid soil characterized by a subsurface accumulation of humus and Al(III) and Fe(III) oxides. Downgradient of the landfills in Northwest Florida, elevated levels of iron and arsenic observations had been made in the groundwater from monitoring wells, which was attributed to the geomicrobial iron and arsenic reduction. There is thus an immediat...
متن کاملIron Transformation Pathways and Redox Micro-Environments in Seafloor Sulfide-Mineral Deposits: Spatially Resolved Fe XAS and δ57/54Fe Observations
Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of microbiology and biotechnology
دوره 24 4 شماره
صفحات -
تاریخ انتشار 2014